Software Past, Present, and Future;
View from the NASA CIO

NASA Software Engineering Workshop

December 2, 1999
Lee Holcomb




Software Past

Y High-level language evolution (Fortran, Ada,
C/C*, Java) ... higher productivity, lower
confidence

¥ Development and use of CMM
Y Limited success of software reuse (NetLib)
¥ No silver bullet

Y Hardware capacity (Moore' s Law) outstrips
software productivity

Y Internet software devel opment process (90-day
time box)

11/24/99 12:07 PM




Software Present

¥ Software devel opment costs exceed plans
and deliveries continue to be late
— Costs often exceed plan by 50%, sometime by 100%
- Most missions have a major software problem
— Software intense projects are often 2 years late

Y Software processes are still chaotic

¥ Software managers are not well trained
v Still no silver bullet

¥ Turnover of |I'T professionalsis high

11/24/99 12:07 PM




NASA’s Largest Software Challenges

Y Earth Observing System Data and Information
System

— NASA design, contractor developed, > Million Lines of
Code (MLOC), COTS components

¥ Checkout Launch Control System

- NASA design and development, > MLOC, COTS
components

¥ Integrated Financial Management System
— Contractor provided COTS >MLOC product

11/24/99 12:07 PM




8330 Software Projects in Industry
Standish Group’s 1994 Report

¥ 16 % were successful
— In budget
- Ontime
- Met requirements
— For large projects, only 9% were successful

¥ 53 % were “challenged”
—- Average 189% over budget
— 222% late
— 39% capabilities missing

¥ 31 % canceled during devel opment

11/24/99 12:07 PM




i Software Future

b
1
L}
3
¥ !
g £
o T
U
s g
- o]
f
- E
: §
il {;
,.
5
i
: I
i A 3
L




¥ COTS

- Market cycle yields poorly-tested, high-risk software

-~ Complex software projects planned as all COTS evolve into COTS plus
custom developed software

— Customers with high-confidence applications will demand quality COTS

¥ Reuse/Formal Methods

Software reuse and formal methods have strong potential to improve

guality and reduce cost
Reuseis still limited to well defined narrow functions

Formal methods have been limited to computer hardware or simple
software applications

¢ Open source movement
— Offers potential for thoroughly examined modular code

@& Software development becomes a science




11/24/99 12:07 PM




CMM Modd : SEl Levels

> 1) Initial: Software process ad hoc, chaotic.
Success depends on heroics.

2) Repeatable: Processes established to track
cost, schedule, functionality

3) Defined: Process for management and
engineering activities documented,
standardized, and integrated

4) Managed:Detailed measures of software
process and product quality collected

5) Optimizing: Continuous Improvement

11/24/99 12:07 PM




System Engineering Quality
Also Part of the Problem

¥ Most projects are now software intense
— All modern system developments involve software
— 90% of functionally is provided by software

¥ System engineering is the work above the
software engineering layer

—- Requirements, architecture, risk management,
Integration, system testing, validation
¥ Quality system engineering is aprerequisite to
guality software engineering
— Must be partitioned into manageabl e elements
—- System engineers often have little software expertise

11/24/99 12:07 PM 10




University Environment Trends
Will Increase the Problem in Software Engineering

¥ Undergraduate

- Demand for graduates in computer science continues to
exceed the supply of graduates

- High starting salaries are increasing rate of dropouts

¥ Advanced computer science degrees

— At one leading university computer science applicants
dropped from 300 per year to 20 per year

— Faculty members are being drawn into industry
reducing the ability to train students

¥ Academic computer science research is
declining

11/24/99 12:07 PM




NASA Software Engineering Goals

1. Implement software engineering processes that
are certified to Level 3 onthe CMM scale for
al NASA centers

- Achievelevel 3inthreeyearsat 3 centers

2. Conduct software research to enable the
development of large trusted software systems

4. Develop with universities a core curriculum
for training software managers, software
engineers, practitioners, and assurance
personnel

5. Define and implement meaningful metrics

11/24/99 12:07 PM




